Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Immunother Cancer ; 12(1)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267222

RESUMO

BACKGROUND: Targeted immunotherapy with monoclonal antibodies (mAbs) is an effective and safe method for the treatment of malignancies. Development of mAbs with improved cytotoxicity, targeting new and known tumor-associated antigens, therefore continues to be an active research area. We reported that Dickkopf-1 (DKK1) is a good target for immunotherapy of human cancers based on its wide expression in different cancers but not in normal tissues. As DKK1 is a secreted protein, mAbs binding directly to DKK1 have limited effects on cancer cells in vivo. METHODS: The specificity and antibody-binding capacity of DKK1-A2 mAbs were determined using indirect ELISA, confocal imaging, QIFIKIT antibody-binding capacity and cell surface binding assays. The affinity of mAbs was determined using a surface plasmon resonance biosensor. A flow cytometry-based cell death was performed to detect tumor cell apoptosis. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were used to evaluate the ability of DKK1-A2 mAbs to mediate ADCC and CDC activities against tumor cells in vitro. Flow cytometry data were collected with an FACSymphony A3 cell analyzer and analyzed with FlowJo V.10.1 software. Human cancer xenograft mouse models were used to determine the in vivo therapeutic efficacy and the potential safety and toxicity of DKK1-A2 mAbs. In situ TUNEL assay was performed to detect apoptosis in tumors and mouse organs. RESULTS: We generated novel DKK1-A2 mAbs that recognize the DKK1 P20 peptide presented by human HLA-A*0201 (HLA-A2) molecules (DKK1-A2 complexes) that are naturally expressed by HLA-A2+DKK1+ cancer cells. These mAbs directly induced apoptosis in HLA-A2+DKK1+ hematologic and solid cancer cells by activating the caspase-9 cascade, effectively lysed the cancer cells in vitro by mediating CDC and ADCC and were therapeutic against established cancers in their xenograft mouse models. As DKK1 is not detected in most human tissues, DKK1-A2 mAbs neither bound to or killed HLA-A2+ blood cells in vitro nor caused tissue damage in tumor-free or tumor-bearing HLA-A2-transgenic mice. CONCLUSION: Our study suggests that DKK1-A2 mAbs may be a promising therapeutic agent to treat human cancers.


Assuntos
Antígeno HLA-A2 , Neoplasias , Humanos , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Peptídeos , Imunoterapia , Neoplasias/tratamento farmacológico , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular
2.
Cancer Res ; 83(24): 4047-4062, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098451

RESUMO

Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE: LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Humanos , Imunoterapia Adotiva/métodos , Linfócitos T , Leucemia Mieloide Aguda/patologia , Receptores de Superfície Celular/metabolismo , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Antígenos CD/metabolismo
3.
Clin Cancer Res ; 29(23): 4808-4821, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728879

RESUMO

PURPOSE: Tumor-infiltrating B lymphocytes (TIL-B) have demonstrated prognostic and predictive significance in solid cancers. In this study, we aimed to distinguish TIL-Bs from malignant B-cells in diffuse large B-cell lymphoma (DLBCL) and determine the clinical and biological significance. EXPERIMENTAL DESIGN: A total of 269 patients with de novo DLBCL from the International DLBCL R-CHOP Consortium Program were studied. Ultra-deep sequencing of the immunoglobulin genes was performed to determine B-cell clonotypes. The frequencies and numbers of TIL-B clonotypes in individual repertoires were correlated with patient survival, gene expression profiling (GEP) data, and frequencies of DLBCL-infiltrating immune cells quantified by fluorescent multiplex IHC at single-cell resolution. RESULTS: TIL-B abundance, evaluated by frequencies of normal B-cell clonotypes in the immunoglobulin repertoires, remarkably showed positive associations with significantly better survival of patients in our sequenced cohorts. DLBCLs with high versus low TIL-B abundance displayed distinct GEP signatures, increased pre-memory B-cell state and naïve CD4 T-cell state fractions, and higher CD4+ T-cell infiltration. TIL-B frequency, as a new biomarker in DLBCL, outperformed the germinal center (GC) B-cell-like/activated B-cell-like classification and TIL-T frequency. The identified TIL-B-high GEP signature, including genes upregulated during T-dependent B-cell activation and those highly expressed in normal GC B cells and T cells, showed significant favorable prognostic effects in several external validation cohorts. CONCLUSIONS: TIL-B frequency is a significant prognostic factor in DLBCL and plays a crucial role in antitumor immune responses. This study provides novel insights into the prognostic determinants in DLBCL and TIL-B functions with important therapeutic implications.


Assuntos
Linfócitos B , Linfoma Difuso de Grandes Células B , Humanos , Prognóstico , Linfócitos B/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Imunidade , Imunoglobulinas/metabolismo
4.
Clin Epigenetics ; 15(1): 134, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620919

RESUMO

Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML). However, MRD cannot be detected in many patients using current methods. We developed a highly sensitive 5-hydroxymethylcytosine (5hmC) signature in cell-free DNA by analyzing 115 AML patients and 86 controls. The 5hmC method detected MRD in 20 of 29 patients with negative MRD by multiparameter flow cytometry and 11 of 14 patients with negative MRD by molecular methods. MRD detection by the 5hmC method was significantly associated with relapse-free survival. This novel method can be used in most AML patients and may significantly impact AML patient management.


Assuntos
Ácidos Nucleicos Livres , Leucemia Mieloide Aguda , Humanos , Metilação de DNA , 5-Metilcitosina , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
5.
Genes (Basel) ; 14(6)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37372359

RESUMO

Epigenetic abnormality is a hallmark of acute myeloid leukemia (AML), and aberrant 5-hydroxymethylcytosine (5hmC) levels are commonly observed in AML patients. As epigenetic subgroups of AML correlate with different clinical outcomes, we investigated whether plasma cell-free DNA (cfDNA) 5hmC could categorize AML patients into subtypes. We profiled the genome-wide landscape of 5hmC in plasma cfDNA from 54 AML patients. Using an unbiased clustering approach, we found that 5hmC levels in genomic regions with a histone mark H3K4me3 classified AML samples into three distinct clusters that were significantly associated with leukemia burden and survival. Cluster 3 showed the highest leukemia burden, the shortest overall survival of patients, and the lowest 5hmC levels in the TET2 promoter. 5hmC levels in the TET2 promoter could represent TET2 activity resulting from mutations in DNA demethylation genes and other factors. The novel genes and key signaling pathways associated with aberrant 5hmC patterns could add to our understanding of DNA hydroxymethylation and highlight the potential therapeutic targets in AML. Our results identify a novel 5hmC-based AML classification system and further underscore cfDNA 5hmC as a highly sensitive marker for AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas , Humanos , Proteínas Proto-Oncogênicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , 5-Metilcitosina/metabolismo
7.
Sci Rep ; 12(1): 12410, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859008

RESUMO

Aberrant changes in 5-hydroxymethylcytosine (5hmC) are a unique epigenetic feature in many cancers including acute myeloid leukemia (AML). However, genome-wide analysis of 5hmC in plasma cell-free DNA (cfDNA) remains unexploited in AML patients. We used a highly sensitive and robust nano-5hmC-Seal technology and profiled genome-wide 5hmC distribution in 239 plasma cfDNA samples from 103 AML patients and 81 non-cancer controls. We developed a 5hmC diagnostic model that precisely differentiates AML patients from controls with high sensitivity and specificity. We also developed a 5hmC prognostic model that accurately predicts prognosis in AML patients. High weighted prognostic scores (wp-scores) in AML patients were significantly associated with adverse overall survival (OS) in both training (P = 3.31e-05) and validation (P = 0.000464) sets. The wp-score was also significantly associated with genetic risk stratification and displayed dynamic changes with varied disease burden. Moreover, we found that high wp-scores in a single gene, BMS1 and GEMIN5 predicted OS in AML patients in both the training set (P = 0.023 and 0.031, respectively) and validation set (P = 9.66e-05 and 0.011, respectively). Lastly, our study demonstrated the genome-wide landscape of DNA hydroxymethylation in AML and revealed critical genes and pathways related to AML diagnosis and prognosis. Our data reveal plasma cfDNA 5hmC signatures as sensitive and accurate markers for AML diagnosis and prognosis. Plasma cfDNA 5hmC analysis will be an effective and minimally invasive tool for AML management.


Assuntos
Ácidos Nucleicos Livres , Leucemia Mieloide Aguda , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Epigenômica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética
8.
Nat Commun ; 13(1): 3728, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764645

RESUMO

Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB. MYCN amplification leads to glycerolipid accumulation by promoting fatty acid (FA) uptake and biosynthesis. We found that cells expressing amplified MYCN depend highly on FA uptake for survival. Mechanistically, MYCN directly upregulates FA transport protein 2 (FATP2), encoded by SLC27A2. Genetic depletion of SLC27A2 impairs NB survival, and pharmacological SLC27A2 inhibition selectively suppresses tumor growth, prolongs animal survival, and exerts synergistic anti-tumor effects when combined with conventional chemotherapies in multiple preclinical NB models. This study identifies FA uptake as a critical metabolic dependency for MYCN-amplified tumors. Inhibiting FA uptake is an effective approach for improving current treatment regimens.


Assuntos
Ácidos Graxos , Neuroblastoma , Animais , Linhagem Celular Tumoral , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo
9.
J Hematol Oncol ; 15(1): 55, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526043

RESUMO

Lysophosphatidic acid (LPA) is a naturally occurring phospholipid that regulates cell proliferation, survival, and migration. However, its role on human multiple myeloma (MM) cells is largely unknown. In this study, we show that LPA, which is highly elevated in MM patients, plays an important role in protecting human MM cells against proteasome inhibitor (PI)-induced apoptosis. LPA bound to its receptor LPAR2 activated its downstream MEK1/2-ERK1/2 signaling pathway and enhanced oxidative phosphorylation (OXPHOS) in mitochondria in MM cells. Increased OXPHOS activity produced more NAD+ and ATP, reduced proteasome activity, and enhanced protein folding and refolding in endoplasmic reticulum (ER), leading to induction of MM resistance to PIs. Importantly, inhibiting LPAR2 activity or knocking out LPAR2 in MM cells significantly enhanced MM sensitivity to PI-induced apoptosis in vitro and in vivo. Interestingly, primary MM cells from LPA-high patients were more resistant to PI-induced apoptosis than MM cells from LPA-low patients. Thus, our study indicates that LPA-LPAR2-mediated signaling pathways play an important role in MM sensitivity to PIs and targeting LPA or LPAR2 may potentially be used to (re)sensitize patients to PI-based therapy.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Apoptose , Humanos , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
10.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631384

RESUMO

Gemcitabine is a chemotherapeutic used clinically to treat a variety of cancers. However, because it lacks tumor cell specificity, gemcitabine may cause off-target cytotoxicity and adversely impact patients. To impart cancer cell specificity to gemcitabine and improve its therapeutic efficacy, we synthesized a unique aptamer-drug conjugate that carries a high gemcitabine payload (three molecules) via a dendrimer structure and enzymatically cleavable linkers for controlled intracellular drug release. First, linker-gemcitabinedendrimer-linker-gemcitabine products were produced, which had significantly lower cytotoxicity than an equimolar amount of free drug. Biochemical analysis revealed that lysosomal cathepsin B protease rapidly cleaved the dendritic linkers and released the conjugated gemcitabine as a free drug. Subsequently, the dendrimer-linker-gemcitabine was coupled with a cell-specific aptamer to form aptamer-gemcitabine conjugates. Functional assays confirmed that, under aptamer guidance, aptamer-gemcitabine conjugates were selectively bound to and then internalized by triple-negative breast cancer cells. Cellular therapy studies indicated that the aptamer-gemcitabine conjugates potentiated cytotoxic activity to targeted cancer cells but did not affect off-target control cells. Our study demonstrates a novel approach to aptamer-mediated targeted drug delivery that combines a high drug payload and an enzymatically controlled drug release switch to achieve higher therapeutic efficacy and fewer off-target effects relative to free-drug chemotherapy.

11.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326720

RESUMO

Although targeted cancer therapy can induce higher therapeutic efficacy and cause fewer side effects in patients, the lack of targetable biomarkers on triple-negative breast cancer (TNBC) cells limits the development of targeted therapies by antibody technology. Therefore, we investigated an alternative approach to target TNBC by using the PDGC21T aptamer, which selectively binds to poorly differentiated carcinoma cells and tumor tissues, although the cellular target is still unknown. We found that synthetic aptamer probes specifically bound cultured TNBC cells in vitro and selectively targeted TNBC xenografts in vivo. Subsequently, to identify the target molecule on TNBC cells, we performed aptamer-mediated immunoprecipitation in lysed cell membranes followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Sequencing analysis revealed a highly conserved peptide sequence consistent with the cell surface protein CD49c (integrin α3). For target validation, we stained cultured TNBC and non-TNBC cells with an aptamer probe or a CD49c antibody and found similar cell staining patterns. Finally, competition cell-binding assays using both aptamer and anti-CD49c antibody revealed that CD49c is the biomarker targeted by the PDGC21T aptamer on TNBC cells. Our findings provide a molecular foundation for the development of targeted TNBC therapy using the PDGC21T aptamer as a targeting ligand.

12.
Blood Cancer J ; 12(2): 25, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105854

RESUMO

Multiple studies have demonstrated that diffuse large B-cell lymphoma (DLBCL) can be divided into subgroups based on their biology; however, these biological subgroups overlap clinically. Using machine learning, we developed an approach to stratify patients with DLBCL into four subgroups based on survival characteristics. This approach uses data from the targeted transcriptome to predict these survival subgroups. Using the expression levels of 180 genes, our model reliably predicted the four survival subgroups and was validated using independent groups of patients. Multivariate analysis showed that this patient stratification strategy encompasses various biological characteristics of DLBCL, and only TP53 mutations remained an independent prognostic biomarker. This novel approach for stratifying patients with DLBCL, based on the clinical outcome of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone therapy, can be used to identify patients who may not respond well to these types of therapy, but would otherwise benefit from alternative therapy and clinical trials.


Assuntos
Linfoma Difuso de Grandes Células B , Transcriptoma , Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Aprendizado de Máquina , Prednisona/uso terapêutico , Prognóstico , Rituximab/uso terapêutico , Vincristina/uso terapêutico
13.
Biology (Basel) ; 11(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35205028

RESUMO

Immunoglobulin (Ig) is known as a hallmark of B-lymphocytes exerting antibody functions. However, our previous studies demonstrated that myeloblasts from acute myeloid leukemia (AML) patients could also express Ig with distinct roles. Here, we quantified Ig (IGHG and IGK) transcripts by real-time PCR and performed a comprehensive analysis of Ig repertoire (both heavy chains and light chains) in AML blasts. We found that Ig was frequently expressed by AML blasts. A higher level of AML-derived IGHG expression correlated with a significantly shorter disease-free survival. Next-generation sequencing revealed dysregulated transcripts of all five Ig classes (IGHA, IGHD, IGHE, IGHG, and IGHM) and two Ig types (IGK and IGL) in AML. VH-D-JH rearrangements in myeloblasts were biased with individual specificity rather than generally diverse as in B-cells. Compared to AML-derived IgH, AML-derived IGK was more conserved among different AML samples. The frequently shared Vκ-Jκ patterns were IGKV3-20*01/IGKJ1*01, IGKV2D-28*01/IGKJ1*01, and IGKV4-1*01/IGKJ1*01. Moreover, AML-derived IGK was different from classical IGK in B-cells for the high mutation rates and special mutation hotspots at serine codons. Findings of the distinct Ig repertoire in myeloblasts may facilitate the discovery of a new molecular marker for disease monitoring and target therapy.

14.
Mol Ther ; 30(6): 2242-2256, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143958

RESUMO

Triple-negative breast cancer is an aggressive subtype of breast cancer that is primarily treated using systemic chemotherapy due to the lack of a specific cell surface marker for drug delivery. Cancer cell-specific aptamer-mediated drug delivery is a promising targeted chemotherapy for marker-unknown cancers. Using a poorly differentiated carcinoma cell-specific DNA aptamer (PDGC21T), we formed a self-assembling circinate DNA nanoparticle (Apt21TNP) that binds triple-negative breast cancer cells. Using our previously designed pH-sensitive dendrimer-conjugated doxorubicin (DDOX) as the payload, we found that each nanoparticle loaded 30 doxorubicin molecules to form an Apt21TNP-DDOX nanomedicine that is stable in human plasma. Upon cell binding, Apt21TNP-DDOX is internalized by triple-negative breast cancer cells through the macropinocytosis pathway. Once inside cells, the low pH microenvironment in lysosomes induces doxorubicin drug payload release from Apt21TNP-DDOX. Our in vitro studies demonstrate that Apt21TNP-DDOX can preferentially bind triple-negative breast cancer cells to induce cell death. Furthermore, we show that Apt21TNP-DDOX can accumulate in subcutaneous MDA-MB-231 tumors in mice following systemic administration to reduce tumor burden, minimize side effects, and improve animal survival. Together, our results demonstrate that Apt21TNP-mediated doxorubicin delivery is a potent, targeted chemotherapy for triple-negative breast cancer that may alleviate side effects in patients.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Camundongos , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
15.
Clin Cancer Res ; 28(5): 972-983, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980601

RESUMO

PURPOSE: Diffuse large B-cell lymphoma (DLBCL) is molecularly and clinically heterogeneous, and can be subtyped according to genetic alterations, cell-of-origin, or microenvironmental signatures using high-throughput genomic data at the DNA or RNA level. Although high-throughput proteomic profiling has not been available for DLBCL subtyping, MYC/BCL2 protein double expression (DE) is an established prognostic biomarker in DLBCL. The purpose of this study is to reveal the relative prognostic roles of DLBCL genetic, phenotypic, and microenvironmental biomarkers. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing; IHC for MYC, BCL2, and FN1; and fluorescent multiplex IHC for microenvironmental markers in a large cohort of DLBCL. We performed correlative and prognostic analyses within and across DLBCL genetic subtypes and MYC/BCL2 double expressors. RESULTS: We found that MYC/BCL2 double-high-expression (DhE) had significant adverse prognostic impact within the EZB genetic subtype and LymphGen-unclassified DLBCL cases but not within MCD and ST2 genetic subtypes. Conversely, KMT2D mutations significantly stratified DhE but not non-DhE DLBCL. T-cell infiltration showed favorable prognostic effects within BN2, MCD, and DhE but unfavorable effects within ST2 and LymphGen-unclassified cases. FN1 and PD-1-high expression had significant adverse prognostic effects within multiple DLBCL genetic/phenotypic subgroups. The prognostic effects of DhE and immune biomarkers within DLBCL genetic subtypes were independent although DhE and high Ki-67 were significantly associated with lower T-cell infiltration in LymphGen-unclassified cases. CONCLUSIONS: Together, these results demonstrated independent and additive prognostic effects of phenotypic MYC/BCL2 and microenvironment biomarkers and genetic subtyping in DLBCL prognostication, important for improving DLBCL classification and identifying prognostic determinants and therapeutic targets.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-myc/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Prognóstico , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Microambiente Tumoral/genética
16.
Biomaterials ; 280: 121259, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801254

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer comprised of cells that lack expression of targetable biomarkers. Nucleic acid aptamers are a group of molecular ligands that can specifically bind to their targets with high affinity. The ssDNA aptamer PDGC21-T recognizes poorly differentiated cancer cells and tumor tissues through an unidentified cell surface target(s). Because TNBC tumor cells are poorly differentiated, the aptamer PDGC21-T is a promising therapeutic candidate to target TNBC tumor cells. In vitro study revealed that synthetic aptamer probes selectively targeted TNBC cell lines. To assess aptamer immunotherapeutic targeting capability, we generated aptamer-engineered NK cells (ApEn-NK) using aptamer probes as a targeting ligand and NK cells as a therapeutic agent. Cell clustering formation assays revealed that ApEn-NK bound both suspended and adherent TNBC cells with high affinity. In a functional study, ApEn-NK treatment triggered apoptosis and death of cultured TNBC cells. Finally, systemic administration of ApEn-NK in mice harboring TNBC xenografts resulted in significant inhibition of lung metastasis relative to parental NK cell treatments. Unlike chemotherapy, ApEn-NK treatment did not affect body weight in treated mice. We demonstrate a novel approach for targeted TNBC immunotherapy.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia , Células Matadoras Naturais/metabolismo , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
17.
Blood ; 139(1): 59-72, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34411225

RESUMO

Proteasome inhibitors (PIs) such as bortezomib (Btz) and carfilzomib (Cfz) are highly efficacious for patients with multiple myeloma (MM). However, relapses are frequent, and acquired resistance to PI treatment emerges in most patients. Here, we performed a high-throughput screen of 1855 Food and Drug Administration (FDA)-approved drugs and identified all-trans retinoic acid (ATRA), which alone has no antimyeloma effect, as a potent drug that enhanced MM sensitivity to Cfz-induced cytotoxicity and resensitized Cfz-resistant MM cells to Cfz in vitro. ATRA activated retinoic acid receptor (RAR)γ and interferon-ß response pathway, leading to upregulated expression of IRF1. IRF1 in turn initiated the transcription of OAS1, which synthesized 2-5A upon binding to double-stranded RNA (dsRNA) induced by Cfz and resulted in cellular RNA degradation by RNase L and cell death. Similar to ATRA, BMS961, a selective RARγ agonist, could also (re)sensitize MM cells to Cfz in vitro, and both ATRA and BMS961 significantly enhanced the therapeutic effects of Cfz in established MM in vivo. In support of these findings, analyses of large datasets of patients' gene profiling showed a strong and positive correlation between RARγ and OAS1 expression and patient's response to PI treatment. Thus, this study highlights the potential for RARγ agonists to sensitize and overcome MM resistance to Cfz treatment in patients.


Assuntos
Antineoplásicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptores do Ácido Retinoico/agonistas , 2',5'-Oligoadenilato Sintetase/imunologia , Linhagem Celular Tumoral , Endorribonucleases/imunologia , Humanos , Receptores do Ácido Retinoico/imunologia , Células Tumorais Cultivadas
18.
Theranostics ; 11(18): 9133-9161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522231

RESUMO

During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.


Assuntos
Aptâmeros de Nucleotídeos , Bactérias/genética , Doenças Transmissíveis/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Vírus/genética , Aptâmeros de Nucleotídeos/farmacologia , Técnicas Biossensoriais , Teste para COVID-19/métodos , Controle de Doenças Transmissíveis , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Ensaio de Imunoadsorção Enzimática/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Técnica de Seleção de Aptâmeros , Internalização do Vírus
19.
Pharmaceutics ; 13(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34452182

RESUMO

Doxorubicin (DOX) is a common anti-tumor drug that binds to DNA or RNA via non-covalent intercalation between G-C sequences. As a therapeutic agent, DOX has been used to form aptamer-drug conjugates for targeted cancer therapy in vitro and in vivo. To improve the therapeutic potential of aptamer-DOX conjugates, we synthesized trifurcated Newkome-type monomer (TNM) structures with three DOX molecules bound through pH-sensitive hydrazone bonds to formulate TNM-DOX. The aptamer-TNM-DOX conjugate (Apt-TNM-DOX) was produced through a simple self-loading process. Chemical validation revealed that Apt-TNM-DOX stably carried high drug payloads of 15 DOX molecules per aptamer sequence. Functional characterization showed that DOX payload release from Apt-TNM-DOX was pH-dependent and occurred at pH 5.0, which reflects the microenvironment of tumor cell lysosomes. Further, Apt-TNM-DOX specifically targeted lymphoma cells without affecting off-target control cells. Aptamer-mediated cell binding resulted in the uptake of Apt-TNM-DOX into targeted cells and the release of DOX payload within cell lysosomes to inhibit growth of targeted lymphoma cells. The Apt-TNM-DOX provides a simple, non-toxic approach to develop aptamer-based targeted therapeutics and may reduce the non-specific side effects associated with traditional chemotherapy.

20.
Oncoimmunology ; 10(1): 1928365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350060

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma with high mutation burdens but a low response rate to immune checkpoint inhibitors. In this study, we performed targeted next-generation sequencing and fluorescent multiplex immunohistochemistry, and investigated the clinical significance and immunological effect of mutation numbers in 424 DLBCL patients treated with standard immunochemotherapy. We found that KMT2D and TP53 nonsynonymous mutations (MUT) were significantly associated with increased nonsynonymous mutation numbers, and that high mutation numbers (MUThigh) were associated with significantly poorer clinical outcome in germinal center B-cell-like DLBCL with wild-type TP53. To understand the underlying mechanisms, we identified a gene-expression profiling signature and the association of MUThigh with decreased T cells in DLBCL patients with wild-type TP53. On the other hand, in overall cohort, MUThigh was associated with lower PD-1 expression in T cells and PD-L1 expression in macrophages, suggesting a positive role of MUThigh in immune responses. Analysis in a whole-exome sequencing dataset of 304 patients deposited by Chapuy et al. validated the correlation of MUT-KMT2D with genomic complexity and the significantly poorer survival associated with higher numbers of genomic single nucleotide variants in activated B-cell-like DLBCL with wild-type TP53. Together, these results suggest that KMT2D inactivation or epigenetic dysregulation has a role in driving DLBCL genomic instability, and that genomic complexity has adverse impact on clinical outcome in DLBCL patients with wild-type TP53 treated with standard immunochemotherapy. The oncoimmune data in this study have important implications for biomarker and therapeutic studies in DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Epigênese Genética , Genômica , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Mutação , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...